Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38496653

RESUMO

Species of the Bacteroidales order are among the most abundant and stable bacterial members of the human gut microbiome with diverse impacts on human health. While Bacteroidales strains and species are genomically and functionally diverse, order-wide comparative analyses are lacking. We cultured and sequenced the genomes of 408 Bacteroidales isolates from healthy human donors representing nine genera and 35 species and performed comparative genomic, gene-specific, mobile gene, and metabolomic analyses. Families, genera, and species could be grouped based on many distinctive features. However, we also show extensive DNA transfer between diverse families, allowing for shared traits and strain evolution. Inter- and intra-specific diversity is also apparent in the metabolomic profiling studies. This highly characterized and diverse Bacteroidales culture collection with strain-resolved genomic and metabolomic analyses can serve as a resource to facilitate informed selection of strains for microbiome reconstitution.

2.
Sci Rep ; 14(1): 1827, 2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246956

RESUMO

It is well-established that women are disproportionately affected by Alzheimer's disease. The mechanisms underlying this sex-specific disparity are not fully understood, but several factors that are often associated-including interactions of sex hormones, genetic factors, and the gut microbiome-likely contribute to the disease's etiology. Here, we have examined the role of sex hormones and the gut microbiome in mediating Aß amyloidosis and neuroinflammation in APPPS1-21 mice. We report that postnatal gut microbiome perturbation in female APPPS1-21 mice leads to an elevation in levels of circulating estradiol. Early stage ovariectomy (OVX) leads to a reduction of plasma estradiol that is correlated with a significant alteration of gut microbiome composition and reduction in Aß pathology. On the other hand, supplementation of OVX-treated animals with estradiol restores Aß burden and influences gut microbiome composition. The reduction of Aß pathology with OVX is paralleled by diminished levels of plaque-associated microglia that acquire a neurodegenerative phenotype (MGnD-type) while estradiol supplementation of OVX-treated animals leads to a restoration of activated microglia around plaques. In summary, our investigation elucidates the complex interplay between sex-specific hormonal modulations, gut microbiome dynamics, metabolic perturbations, and microglial functionality in the pathogenesis of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Masculino , Feminino , Humanos , Animais , Camundongos , Microglia , Proteínas Amiloidogênicas , Estradiol , Placa Amiloide
3.
Cell Host Microbe ; 32(1): 117-130.e4, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38103544

RESUMO

Metabolites produced by the intestinal microbiome modulate mucosal immune defenses and optimize epithelial barrier function. Intestinal dysbiosis, including loss of intestinal microbiome diversity and expansion of antibiotic-resistant pathobionts, is accompanied by changes in fecal metabolite concentrations and increased incidence of systemic infection. Laboratory tests that quantify intestinal dysbiosis, however, have yet to be incorporated into clinical practice. We quantified fecal metabolites in 107 patients undergoing liver transplantation (LT) and correlated these with fecal microbiome compositions, pathobiont expansion, and postoperative infections. Consistent with experimental studies implicating microbiome-derived metabolites with host-mediated antimicrobial defenses, reduced fecal concentrations of short- and branched-chain fatty acids, secondary bile acids, and tryptophan metabolites correlate with compositional microbiome dysbiosis in LT patients and the relative risk of postoperative infection. Our findings demonstrate that fecal metabolite profiling can identify LT patients at increased risk of postoperative infection and may provide guideposts for microbiome-targeted therapies.


Assuntos
Microbioma Gastrointestinal , Transplante de Fígado , Humanos , Transplante de Fígado/efeitos adversos , Disbiose , Fezes , Ácidos Graxos
4.
Invest Ophthalmol Vis Sci ; 64(15): 21, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108689

RESUMO

Purpose: Emerging data indicate that metformin may prevent the development of age-related macular degeneration (AMD). Whereas the underlying mechanisms of metformin's anti-aging properties remain undetermined, one proposed avenue is the gut microbiome. Using the laser-induced choroidal neovascularization (CNV) model, we investigate the effects of oral metformin on CNV, retinal pigment epithelium (RPE)/choroid transcriptome, and gut microbiota. Methods: Specific pathogen free (SPF) male mice were treated via daily oral gavage of metformin 300 mg/kg or vehicle. Male mice were selected to minimize sex-specific differences to laser induction and response to metformin. Laser-induced CNV size and macrophage/microglial infiltration were assessed by isolectin and Iba1 immunostaining. High-throughput RNA-seq of the RPE/choroid was performed using Illumina. Fecal pellets were analyzed for gut microbiota composition/pathways with 16S rRNA sequencing/shotgun metagenomics, as well as microbial-derived metabolites, including small-chain fatty acids and bile acids. Investigation was repeated in metformin-treated germ-free (GF) mice and antibiotic-treated/GF mice receiving fecal microbiota transplantation (FMT) from metformin-treated SPF mice. Results: Metformin treatment reduced CNV size (P < 0.01) and decreased Iba1+ macrophage/microglial infiltration (P < 0.005). One hundred forty-five differentially expressed genes were identified in the metformin-treated group (P < 0.05) with a downregulation in pro-angiogenic genes Tie1, Pgf, and Gata2. Furthermore, metformin altered the gut microbiome in favor of Bifidobacterium and Akkermansia, with a significant increase in fecal levels of butyrate, succinate, and cholic acid. Metformin did not suppress CNV in GF mice but colonization of microbiome-depleted mice with metformin-derived FMT suppressed CNV. Conclusions: These data suggest that oral metformin suppresses CNV, the hallmark lesion of advanced neovascular AMD, via gut microbiome modulation.


Assuntos
Neovascularização de Coroide , Degeneração Macular Exsudativa , Masculino , Feminino , Animais , Camundongos , Inibidores da Angiogênese , RNA Ribossômico 16S , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Retina , Neovascularização de Coroide/prevenção & controle
5.
Nat Microbiol ; 8(11): 2033-2049, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845315

RESUMO

Progression of chronic liver disease is precipitated by hepatocyte loss, inflammation and fibrosis. This process results in the loss of critical hepatic functions, increasing morbidity and the risk of infection. Medical interventions that treat complications of hepatic failure, including antibiotic administration for systemic infections and lactulose treatment for hepatic encephalopathy, can impact gut microbiome composition and metabolite production. Here, using shotgun metagenomic sequencing and targeted metabolomic analyses on 847 faecal samples from 262 patients with acute or chronic liver disease, we demonstrate that patients hospitalized for liver disease have reduced microbiome diversity and a paucity of bioactive metabolites, including short-chain fatty acids and bile acid derivatives, that impact immune defences and epithelial barrier integrity. We find that patients treated with the orally administered but non-absorbable disaccharide lactulose have increased densities of intestinal bifidobacteria and reduced incidence of systemic infections and mortality. Bifidobacteria metabolize lactulose, produce high concentrations of acetate and acidify the gut lumen in humans and mice, which, in combination, can reduce the growth of antibiotic-resistant bacteria such as vancomycin-resistant Enterococcus faecium in vitro. Our studies suggest that lactulose and bifidobacteria serve as a synbiotic to reduce rates of infection in patients with severe liver disease.


Assuntos
Encefalopatia Hepática , Lactulose , Humanos , Camundongos , Animais , Encefalopatia Hepática/tratamento farmacológico , Encefalopatia Hepática/prevenção & controle , Antibacterianos/uso terapêutico
6.
Cell Rep ; 42(8): 112861, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37523264

RESUMO

Clostridioides difficile produces toxins that damage the colonic epithelium, causing colitis. Variation in disease severity is poorly understood and has been attributed to host factors and virulence differences between C. difficile strains. We test 23 epidemic ST1 C. difficile clinical isolates for their virulence in mice. All isolates encode a complete Tcd pathogenicity locus and achieve similar colonization densities. However, disease severity varies from lethal to avirulent infections. Genomic analysis of avirulent isolates reveals a 69-bp deletion in the cdtR gene, which encodes a response regulator for binary toxin expression. Deleting the 69-bp sequence in virulent R20291 strain renders it avirulent in mice with reduced toxin gene transcription. Our study demonstrates that a natural deletion within cdtR attenuates virulence in the epidemic ST1 C. difficile isolates without reducing colonization and persistence. Distinguishing strains on the basis of cdtR may enhance the specificity of diagnostic tests for C. difficile colitis.


Assuntos
Clostridioides difficile , Colite , Animais , Camundongos , Virulência/genética , Clostridioides difficile/genética , Clostridioides/metabolismo , Genômica , Colite/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
7.
bioRxiv ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36711955

RESUMO

Clostridioides difficile (C. difficile) , a leading cause of nosocomial infection, produces toxins that damage the colonic epithelium and results in colitis that varies from mild to fulminant. Variation in disease severity is poorly understood and has been attributed to host factors (age, immune competence and intestinal microbiome composition) and/or virulence differences between C. difficile strains, with some, such as the epidemic BI/NAP1/027 (MLST1) strain, being associated with greater virulence. We tested 23 MLST1(ST1) C. difficile clinical isolates for virulence in antibiotic-treated C57BL/6 mice. All isolates encoded a complete Tcd pathogenicity locus and achieved similar colonization densities in mice. Disease severity varied, however, with 5 isolates causing lethal infections, 16 isolates causing a range of moderate infections and 2 isolates resulting in no detectable disease. The avirulent ST1 isolates did not cause disease in highly susceptible Myd88 -/- or germ-free mice. Genomic analysis of the avirulent isolates revealed a 69 base-pair deletion in the N-terminus of the cdtR gene, which encodes a response regulator for binary toxin (CDT) expression. Genetic deletion of the 69 base-pair cdtR sequence in the highly virulent ST1 R20291 C. difficile strain rendered it avirulent and reduced toxin gene transcription in cecal contents. Our study demonstrates that a natural deletion within cdtR attenuates virulence in the epidemic ST1 C. difficile strain without reducing colonization and persistence in the gut. Distinguishing strains on the basis of cdtR may enhance the specificity of diagnostic tests for C. difficile colitis.

8.
Nat Biomed Eng ; 7(1): 38-55, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36550307

RESUMO

The microbiome modulates host immunity and aids the maintenance of tolerance in the gut, where microbial and food-derived antigens are abundant. Yet modern dietary factors and the excessive use of antibiotics have contributed to the rising incidence of food allergies, inflammatory bowel disease and other non-communicable chronic diseases associated with the depletion of beneficial taxa, including butyrate-producing Clostridia. Here we show that intragastrically delivered neutral and negatively charged polymeric micelles releasing butyrate in different regions of the intestinal tract restore barrier-protective responses in mouse models of colitis and of peanut allergy. Treatment with the butyrate-releasing micelles increased the abundance of butyrate-producing taxa in Clostridium cluster XIVa, protected mice from an anaphylactic reaction to a peanut challenge and reduced disease severity in a T-cell-transfer model of colitis. By restoring microbial and mucosal homoeostasis, butyrate-releasing micelles may function as an antigen-agnostic approach for the treatment of allergic and inflammatory diseases.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Hipersensibilidade a Amendoim , Camundongos , Animais , Micelas , Butiratos
9.
Nat Commun ; 13(1): 6615, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329015

RESUMO

Respiratory failure and mortality from COVID-19 result from virus- and inflammation-induced lung tissue damage. The intestinal microbiome and associated metabolites are implicated in immune responses to respiratory viral infections, however their impact on progression of severe COVID-19 remains unclear. We prospectively enrolled 71 patients with COVID-19 associated critical illness, collected fecal specimens within 3 days of medical intensive care unit admission, defined microbiome compositions by shotgun metagenomic sequencing, and quantified microbiota-derived metabolites (NCT #04552834). Of the 71 patients, 39 survived and 32 died. Mortality was associated with increased representation of Proteobacteria in the fecal microbiota and decreased concentrations of fecal secondary bile acids and desaminotyrosine (DAT). A microbiome metabolic profile (MMP) that accounts for fecal secondary bile acids and desaminotyrosine concentrations was independently associated with progression of respiratory failure leading to mechanical ventilation. Our findings demonstrate that fecal microbiota composition and microbiota-derived metabolite concentrations can predict the trajectory of respiratory function and death in patients with severe SARS-Cov-2 infection and suggest that the gut-lung axis plays an important role in the recovery from COVID-19.


Assuntos
COVID-19 , Pneumonia , Insuficiência Respiratória , Humanos , SARS-CoV-2 , Ácidos e Sais Biliares , Imunidade
10.
J Phys Chem B ; 121(29): 6989-7004, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28715215

RESUMO

Seemingly redundant parallel pathways for electron transfer (ET), composed of identical sets of cofactors, are a cornerstone feature of photosynthetic reaction centers (RCs) involved in light-energy conversion. In native bacterial RCs, both A and B branches house one bacteriochlorophyll (BChl) and one bacteriopheophytin (BPh), but the A branch is used exclusively. Described herein are the results obtained for two Rhodobacter capsulatus RCs with an unnaturally high degree of cofactor asymmetry, two BPh on the RC's B side and two BChl on the A side. These pigment changes derive, respectively, from the His(M180)Leu mutation [a BPh (ΦB) replaces the B-side BChl (BB)], and the Leu(M212)His mutation [a BChl (ßA) replaces the A-side BPh (HA)]. Additionally, Tyr(M208)Phe was employed to disfavor ET to the A branch; in one mutant, Val(M131)Glu creates a hydrogen bond to HB to enhance ET to HB. In both ΦB mutants, the decay kinetics of the excited primary ET donor (P*) resolve three populations with lifetimes of ∼9 ps (50-60%), ∼40 ps (10-20%), and ∼200 ps (20-30%), with P+ΦB- formed predominantly from the 9 ps fraction. The 50-60% yield of P+ΦB- is the highest yet observed for a ΦB-containing RC. The results provide insight into factors needed for efficient multistep ET.


Assuntos
Carotenoides/química , Elétrons , Rhodobacter capsulatus/química , Metabolismo Energético , Cinética , Luz , Modelos Biológicos , Mutação , Rhodobacter capsulatus/genética
11.
FEBS Lett ; 590(16): 2515-26, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27325608

RESUMO

The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. The overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.


Assuntos
Transporte de Elétrons/genética , Fotossíntese/genética , Rhodobacter capsulatus/genética , Rhodobacter sphaeroides/genética , Substituição de Aminoácidos , Cinética , Mutagênese Sítio-Dirigida , Mutação , Rhodobacter capsulatus/crescimento & desenvolvimento , Rhodobacter sphaeroides/crescimento & desenvolvimento
12.
Biochim Biophys Acta ; 1857(2): 150-159, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26658355

RESUMO

Using high-throughput methods for mutagenesis, protein isolation and charge-separation functionality, we have assayed 40 Rhodobacter capsulatus reaction center (RC) mutants for their P(+)QB(-) yield (P is a dimer of bacteriochlorophylls and Q is a ubiquinone) as produced using the normally inactive B-side cofactors BB and HB (where B is a bacteriochlorophyll and H is a bacteriopheophytin). Two sets of mutants explore all possible residues at M131 (M polypeptide, native residue Val near HB) in tandem with either a fixed His or a fixed Asn at L181 (L polypeptide, native residue Phe near BB). A third set of mutants explores all possible residues at L181 with a fixed Glu at M131 that can form a hydrogen bond to HB. For each set of mutants, the results of a rapid millisecond screening assay that probes the yield of P(+)QB(-) are compared among that set and to the other mutants reported here or previously. For a subset of eight mutants, the rate constants and yields of the individual B-side electron transfer processes are determined via transient absorption measurements spanning 100 fs to 50 µs. The resulting ranking of mutants for their yield of P(+)QB(-) from ultrafast experiments is in good agreement with that obtained from the millisecond screening assay, further validating the efficient, high-throughput screen for B-side transmembrane charge separation. Results from mutants that individually show progress toward optimization of P(+)HB(-)→P(+)QB(-) electron transfer or initial P*→P(+)HB(-) conversion highlight unmet challenges of optimizing both processes simultaneously.


Assuntos
Bacterioclorofilas/química , Complexos de Proteínas Captadores de Luz/química , Feofitinas/química , Fotossíntese/fisiologia , Rhodobacter capsulatus/química , Ubiquinona/química , Motivos de Aminoácidos , Bacterioclorofilas/metabolismo , Transporte de Elétrons , Expressão Gênica , Ligação de Hidrogênio , Cinética , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , Feofitinas/metabolismo , Fotossíntese/efeitos da radiação , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Rhodobacter capsulatus/efeitos da radiação , Eletricidade Estática , Relação Estrutura-Atividade , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...